Experiments Suggest that Simulations May Overestimate Electrostatic Contributions to the Mechanical Stability of a Fibronectin Type III Domain
نویسندگان
چکیده
Steered molecular dynamics simulations have previously been used to investigate the mechanical properties of the extracellular matrix protein fibronectin. The simulations suggest that the mechanical stability of the tenth type III domain from fibronectin (FNfn10) is largely determined by a number of critical hydrogen bonds in the peripheral strands. Interestingly, the simulations predict that lowering the pH from 7 to approximately 4.7 will increase the mechanical stability of FNfn10 significantly (by approximately 33 %) due to the protonation of a few key acidic residues in the A and B strands. To test this simulation prediction, we used single-molecule atomic force microscopy (AFM) to investigate the mechanical stability of FNfn10 at neutral pH and at lower pH where these key residues have been shown to be protonated. Our AFM experimental results show no difference in the mechanical stability of FNfn10 at these different pH values. These results suggest that some simulations may overestimate the role played by electrostatic interactions in determining the mechanical stability of proteins.
منابع مشابه
Stability Analysis in Parametrically Excited Electrostatic Torsional Micro-actuators
This paper addresses the static and dynamic stabilities of a parametrically excited torsional micro-actuator. The system is composed of a rectangular micro-mirror symmetrically suspended between two electrodes and acted upon by a steady (dc ) while simultaneously superimposed to an (ac ) voltage. First, the stability of the system subjected to a quasi-statically applied (dc ) voltage is investi...
متن کاملDesigning an extracellular matrix protein with enhanced mechanical stability.
The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain...
متن کاملStructural and dynamic properties that govern the stability of an engineered fibronectin type III domain
Consensus protein design is a rapid and reliable technique for the improvement of protein stability, which relies on the use of homologous protein sequences. To enhance the stability of a fibronectin type III (FN3) domain, consensus design was employed using an alignment of 2123 sequences. The resulting FN3 domain, FN3con, has unprecedented stability, with a melting temperature >100°C, a ΔG(D-N...
متن کاملP-74: Effect of Fndc5 Overexpression onCardiac Differentiation Rate of mESCs
Background: Fibronectin type III domain-containing 5 proteins (Fndc5), an exercise hormone, formerly known as peroxisomal protein that was cloned in 2002. Transcript profile analysis of Fndc5 revealed high degree of expression in heart, skeletal muscle and brain. Our recent studies indicated a significant increase (approximately 10 folds) in mRNA level of Fndc5 when mouse embryonic stem cells w...
متن کاملThe mechanical hierarchies of fibronectin observed with single-molecule AFM.
Mechanically induced conformational changes in proteins such as fibronectin are thought to regulate the assembly of the extracellular matrix and underlie its elasticity and extensibility. Fibronectin contains a region of tandem repeats of up to 15 type III domains that play critical roles in cell binding and self-assembly. Here, we use single-molecule force spectroscopy to examine the mechanica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 371 شماره
صفحات -
تاریخ انتشار 2007